A (3+1)-dimensional generalized BKP-Boussinesq equation: Lie group approach
نویسندگان
چکیده
منابع مشابه
geometrical categories of generalized lie groups and lie group-groupoids
in this paper we construct the category of coverings of fundamental generalized lie group-groupoid associatedwith a connected generalized lie group. we show that this category is equivalent to the category of coverings of aconnected generalized lie group. in addition, we prove the category of coverings of generalized lie groupgroupoidand the category of actions of this generalized lie group-gro...
متن کاملClassical and Nonclassical Symmetries of a Generalized Boussinesq Equation
We apply the Lie-group formalism and the nonclassical method due to Bluman and Cole to deduce symmetries of the generalized Boussinesq equation, which has the classical Boussinesq equation as an special case. We study the class of functions f(u) for which this equation admit either the classical or the nonclassical method. The reductions obtained are derived. Some new exact solutions can be der...
متن کاملNew Analytic Solutions for the (N + 1)-Dimensional Generalized Boussinesq Equation
Abstract: In this paper, the generalized Jacobi elliptic functions expansion method with computerized symbolic computation are employed to investigate explicitly analytic solutions of the (N + 1)-dimensional generalized Boussinesq equation. The exact solutions to the equation are constructed analytically under certain circumstances, some of these solutions are degenerated to soliton-like soluti...
متن کاملTraveling solitary wave solutions to the generalized Boussinesq equation
In this paper, we are concerned with the generalized Boussinesq equation including the singularly sixth-order Boussinesq equation, which describes the bi-directional propagation of small amplitude and long capillary-gravity waves on the surface of shallow water for bond number less than but very close to 1/3. By the means of two proper ansatzs, we obtain explicit traveling solitary wave solutio...
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Physics
سال: 2019
ISSN: 2211-3797
DOI: 10.1016/j.rinp.2019.102239